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Let En and Fm be two symmetric Banach spaces, and : a reasonable norm on
their tensor product. We give asymptotically best possible estimates for the
approximation and Gelfand numbers of the natural embedding from the nm-dimen-
sional Hilbert space l nm

2 into En�: Fm , and its inverse. Our results are used in
order to compute some related characteristics of such tensor products (e.g., type
and cotype constants). � 1997 Academic Press

Let En=(Rn, & }&) and Fm=(Rm, _ }_) be two symmetric Banach spaces
and : a reasonable norm on their tensor product En �Fm . We prove
asymptotically best possible estimates for the approximation numbers,
Weyl, Gelfand and Kolmogorov numbers of the tensor product identities

I1=id� id: l nm
2 � En �: Fm

I2=id� id: En�: Fm � l nm
2 .

We show that the decay of the first nm�2 approximation numbers of these
identities is very slow: For i=1 ,2 and all 1�k�[nm�2]

1

- 2
&Ii&�ak(Ii)�&Ii&.

In several concrete situations the following general conjecture is proved:

ak(Ii) �� max \ 1
&I &1

i &
, \nm&k+1

nm +
1�2

&Ii&+
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(with absolute constants independent of En , Fm and :). Using completely
different techniques��in particular, the Pajor�Tomczak inequality for
Gelfand numbers of operators with values in Hilbert spaces��we show that

ck(I2)

up to a log-term equals the l-norm of the dual of I2 divided by (nm)1�2. For
En=l n

p , Fn=l n
q and :== or ? (the injective and projective norm), and for

the Schatten classes sn
p our results lead to the precise asymptotic orders of

the [n2�2]th approximation, Weyl, Gelfand and Kolmogorov number
of id1 and id2 . Moreover, we prove analogues for Schatten classes of
Stechkin's formula for the k th approximation number of id : l N

1 � l N
2 , and

the asymptotic estimate of Garnaev and Gluskin for the k th Gelfand
number of id: l N

1 � l N
2 .

The only article on s-numbers of identity operators on tensor products
of l n

p 's we know of is [GKS]; our motivation came from a recent paper of
Heinrich [H] which shows that the complexity of computing a functional
of a solution of a Fredholm integral equation is related to the asymptotic
order of certain tensor product identities. Applications of our results in this
direction will be given in a forthcoming paper; in the present paper our
estimates are used to prove asymptotically best possible bounds for some
(local Banach space) invariants of finite dimensional tensor products��e.g.
the type 2 constant of l n

p�? ln
q and cotype 2 constant of l n

p�= l n
q .

0

We always consider real Banach spaces X and denote their unit ball by
BX . For a linear and continuous operator T # L(X, Y ) (between Banach
spaces) recall the definition of the k th approximation number

ak(T ) :=inf[&T&R& | R # L(X, Y ), rank R<k],

the k th Weyl number

xk(T ) :=sup[ak(TR) | R # L(l2 , X ), &R&�1],

the k th Gelfand number

ck(T ) :=inf[&T | G& | G/X, codim G<k]

and the k th Kolmogorov number

dk(T ) :=inf[&qL T& | L/Y, dim L<k],
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where qL denotes the quotient mapping E � E�L. For s=a, x, c, d the
sequences (sk(T )) are non-increasing, s1(T )=&T&, sn(idl 2

n)=1, and
sk(T )=0 whenever rank T<k. It is known that xk�ck�ak (hence
equality for operators on Hilbert spaces) and dk�ak ; if T is compact, then
ck(T )=dk(T $) and dk(T )=ck(T $). Moreover, ck(T )=ak(IY T ) and
dk(T )=ak(TQX) where IY : YYl�(BY $) and QX : l1(BX) � X denote the
canonical mappings. Finally, we recall that all these s-number scales are
multiplicative, i.e.

sk+n&1(ST )�sk(S ) sn(T ) for appropriate S, T.

For more information see [CS], [K], [P2], [P], and [Pi].
For two Banach spaces E and F we write E�? F for the projective ten-

sor product, and E�= F for the injective tensor product. Moreover, for
1�p�� we denote by lp�2p E the space lp�E endowed with the norm
coming from the inclusion lp�EYlp(E ); recall that =�2p�?. The space
L(l n

2 , l n
2) together with the Schatten p-norm is denoted by sn

p; it is well-
known that sn

1=l n
2�? l n

2 , sn
2=l n

2 �22
l n

2=l n2

2 and sn
�=l n

2�= l n
2 . We use

[DF] as a general reference for tensor products of Banach spaces.

1

A well-known result of Pietsch [P2], 2.9.8 states that for 1�p<q��
and 1�k�N

ak(id: l N
q � l N

p )=(N&k+1)1�p&1�q;

in particular, for 1�k�[N�2]

1

- 2
&id&�ak(id)�&id&

��the first [N�2]-approximation numbers almost equal the norm (here
[N�2] stands for the smallest integer larger than or equal to N�2). The
Gelfand and Kolmogorov number satisfy the same formula.

For the special case q=2 and p=1 we have the following extension.

Proposition. For m, n # N let : be a norm on l n
1� l m

1 with =�:�?.
Then for all 1�k�nm

ak(id : l nm
2 � l n

1�: l m
1 )=(nm&k+1)1�2;
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in particular, for 1�k�[nm�2]

1

- 2
&id&�ak (id)�&id&.

The proof is based on a simple lemma. Recall that for T # L(X, Y ) the
absolutely p-summing norm (1�p<�) is given by

?p(T ) :=sup {\ :
n

k=1

&Txk & p+
1�p

} sup
BE $

\ :
n

k=1

|x$(xk)| p+
1�p

�1= # [0, �].

For operators between Hilberts spaces this ideal norm coincides with the
Hilbert Schmidt norm HS(=Schatten 2-norm), and

?2(idX)=- N whenever dim X=N;

see e.g. [DF], [P1] or [T] for details.

Lemma. Let T # L(X, Y ) be an invertible operator between two N-dimen-
sional Banach spaces X and Y. Then for all 1�k�N

ck(T )�
(N&k+1)1�2

?2(T &1)
.

Proof. Take a subspace M/X with codim M<k. Then

N&k+1�dim M,

hence

(N&k+1)1�2�(dim M )1�2=?2(idM).

Clearly (by the injectivity of ?2)

?2(idM)=?2(I : MYX ),

therefore,

M ww�I X

Y

gives, as desired,

(N&k+1)1�2�&T | M& ?2(T &1). K
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The proof of the proposition now follows easily: Since l n
1�? l m

1 =l nm
1 , the

result for :=? obviously is a special case of Pietsch's formula. So it is
enough to check the lower bound for :==. It is well-known (see e.g. [FJ])
that ?2 is tensor stable in the following sense: For T # L(E, l n

2) and
S # L(F, l m

2 )

?2(T�S : E�= F � l nm
2 )=?2(T ) ?2(S ).

Since (see e.g. [P1])

?2(id : l N
1 Yl N

2 )=1,

the lemma gives

ak(id : l nm
2 � l n

1�= l m
1 )

�(nm&k+1)1�2 ?2(id : l n
1�= l m

1 � l nm
2 )&1

=(nm&k+1)1�2 ?2(id : l n
1Yl n

2)&1 ?2(id: l m
1 Yl m

2 )&1

=(nm&k+1)1�2.

This completes the proof. K

Clearly, the proposition also holds for the Gelfand and Weyl numbers��
but it will be seen in section 6 that it does not hold for the Kolmogorov
numbers (and :==).

2

The second statement of the proposition can be improved considerably
which needs some preparation.

For n # N denote by 6n the set of all permutations of [1, ..., n] and by
Dn the set of all (=k)n

k=1 with =k=\1. For = # Dn and ? # 6n let

D= : Rn � Rn, D=x := :
n

k=1

=k xk ek

P? : Rn � Rn, P? x := :
n

k=1

x?(k) ek .

If & }& is some norm on Rn, then X=(Rn, & }&) is said to be symmetric
whenever all D= and P? define isometries on X. It is easy to check that with
X also X $ has this property. The most important examples are the l n

p 's
or Rn with some Orlicz norm. We call a norm : on the tensor product
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En�Fm of two such spaces symmetrically invariant if =�:�? and for all
symmetries S # Sn :=[D= | = # Dn] _ [P? | # 6n] and T # Sm

S�T : En�: Fm � En�: Fm

is an isometry. All tensor norms��in particular, = and ?��are symmetrically
invariant, and also 2p and the Schatten p-norm have this property.

The following result is one of our main tools��it seems to be known to
some specialists. Therefore we only sketch the proof.

Proposition. Let : and ; be symmetrically invariant norms on En�Fm

and Xn�Ym , respectively, where all spaces are symmetric, dim En=
dim Xn=n and dim Fm=dim Ym=m. Then

?2(id : En�: Fm � Xn�; Ym)=(nm)1�2 &id: l nm
2 � Xn�; Ym&

&id: l nm
2 � En�: Fm&

. (1)

Clearly, (1) has as special cases

?2(id: En�: Fm � l nm
2 )=(nm)1�2 &id : l nm

2 � En �: Fm&&1 (2)

and

?2(id : l nm
2 � Xn�; Ym)=(nm)1�2 &id: l nm

2 � Xn�; Ym &. (3)

For unitarily invariant norms : on tensor products of Hilbert spaces
equality (2)��at least essentially��seems to be due to [GL], [L], and is
explicitly stated in [T], p. 310; our proof is completely elementary and
modelled along similar lines.

Assume for a moment that the upper estimate in (2) has been proven.
Then (1) can be derived by standard arguments as follows: The upper
estimate is a consequence of

?2(id : En �: Fm � Xn�; Ym)

�?2(id: En�: Fm � l nm
2 ) &id: l nm

2 � Xn�; Ym&,

and the lower estimate is obtained by trace duality (see e.g. [DF], p. 208,
232, or [P1]) since

nm�?2(id: l nm
2 � Xn �; Ym) ?2(id: Xn �; Ym � l nm

2 )

�&id : l nm
2 � En�: Fm &

_?2(id : En�: Fm � Xn�; Ym) ?2(id: Xn�; Ym � l nm
2 ).
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For the proof of the upper estimate in (2) we prefer to change the setting��
the following statement is a reformulation of (2) in terms of linear
operators:

(2$) For En and Fm as above let A be a symmetrically invariant norm
on L(En , Fm), i.e. for all symmetries S # Sn and T # Sm

A(TUS )=A(U ) for all U # L(En , Fm).

Then

?2(id : (L(En , Fm), A) � (L(l n
2 , l m

2 ), HS))

=(nm)1�2 &id : (L(l n
2 , l m

2 ), HS) � (L(En , Fm), A)&&1.

In order to see that (2) is an immediate consequence of (2$) apply (2$) to
the symmetrically invariant norm A defined by

(L(E $n , Fm), A) :=En�: Fm

(recall that with En also E $n is symmetric).
For the proof of (2$) a non-commutative version of the Khinchine equality

for Rademacher 2-averages is needed. Let &n be the Haar measure on 6n , i.e.

&n([?]) :=
1
n !

for all ? # 6n ,

and +n the Haar measure on Dn given by

+n([=]) :=
1
2n for all = # Dn .

Lemma 1. For R # L(Rn, Rm) and S # L(Rm, Rn)

\|6n
|

Dn
|

6m
|

Dm

|tr(RD=P?SD=~ P?~ )| 2 d+m(=~ ) d&m(?~ ) d+n(=) d&n(?)+
1�2

=
HS(R) HS(S )

(nm)1�2 . (4)

In order to picture this formula look at

Rn ww�R
Rn

Rn �ww
S

Rm.
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For its proof an elementary lemma helps.

Lemma 2. For any x, y # Rn

\|6n
|

Dn

|(x, D=P? y) | 2 d+n(=) d&n(?)+
1�2

=
&x&2 &y&2

n1�2 .

Proof of Lemma 2 (for abbreviation we write d= :=d+n(=) and
d? :=d&n(?)). Without loss of generality we show the formula for y=e1 :

|
6n

|
Dn

|(x, =?(1)e?(1)) | 2 d= d?=|
6n

|(x, e?(1)) | 2 d?

= :
n

l=1
|

?(1)=l
|x?(1)|

2 d?

= :
n

l=1

1
n !

(n&1)! |xl |
2

=
1
n

&x&2
2 . K

The formula (4) of Lemma 1 follows immediately from Lemma 2 and the
definitions of the trace and HS-norm of operators T by

tr(T )=:
i

(Tei , ei)

and

HS(T )=\:
i

&Tei&
2+

1�2

=\:
i

&T*ei&
2+

1�2

(see also [T], p. 310). K

The proof of (2$) now more or less repeats the elementary part of
Pietsch's domination theorem [P1], p. 232. Namely, let S be an element of
the unit ball B of the Banach space (L(En , Em), A)$ such that

HS(S )=sup[HS(T ) | T # B],

and + the image of the counting measure d= d=~ d? d?~ on the set

[D=P?SD=~ P?~ ]/B.
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Then by Lemma 1 for any T # L(En , Fm) one has

HS(T )=
(nm)1�2

HS(S ) \|B
|tr(TR)|2 d+(R)+

1�2

Now the conclusion follows as in Pietsch's theorem.

3

For T # L(E, F ) and k # N

k1�2xk(T )�?2(T )

(see e.g. [K] and [P1]). This is the crucial link between Weyl�approxima-
tion numbers and the 2-summing norm which together with the proposi-
tion of the preceding section now easily gives the following estimate.

Proposition. Let : and ; be symmetrically invariant norms on En�Fm

and Xn�Ym , respectively, where all spaces are symmetric, dim En=
dim Xn=n and dim Fm=dim Ym=m. Then for all 1�k�nm

\nm&k+1
nm +

1�2 &id : l nm
2 � Xn�; Ym&

&id : l nm
2 � En �: Fm&

�xk(id: En�: Fm � Xn�; Ym)

�\nm
k +

1�2 &id: l nm
2 � Xn�; Ym &

&id : l nm
2 � En�: Fm &

.

Proof. The second inequality is obvious from what was said before, and
the first then follows from the basic properties of the Weyl numbers:

1=xnm(idl2
nm)

�xk(id: l nm
2 � Xn�; Ym) xnm&k+1(id: Xn�; Ym � l nm

2 )

�&id : l nm
2 � En�: Fm & xk(id: En �: Fm � Xn�; Ym)

_\ nm
nm&k+1+

1�2

&id : l nm
2 � Xn �; Ym&&1. K

There are immediate consequences of this result.
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Corollary. Let En�: Fm and Xn �; Ym be as above.

(1) For 1�k�[nm�2]

1

- 2
&id&�ak(id : l nm

2 � Xn�; Ym)

=ck(id: l nm
2 � Xn�; Ym)�&id&.

(2) For 1�k�[nm�2]

1

- 2
&id&�ak(id : En �: Fm � l nm

2 )

=dk(id : En �: Fm � l nm
2 )�&id&.

(3)
1

- 2

&id: l nm
2 � Xn�; Ym&

&id: l nm
2 � En�: Fm&

�x[nm�2](id: En�: Fm � Xn�; Ym)

�- 2
&id : l nm

2 � Xn�; Ym&

&id : l nm
2 � En�: Fm&

.

Let us now interpret these results for the special spaces En=l n
p , Fm=l m

q

and the norms :== or ?; define

:(n, m, p, q) :=&id: l nm
2 � l n

p �: l m
q &.

We know by the mapping property for = (see [DF], p. 46) that

=(n, m, p, q)=&id : l n
2 � l n

p& &id: l m
2 � l m

q &

={
n1�p&1�2m1�q&1�2

1
n1�p&1�2

m1�q&1�2

1�p, q�2
2�p, q��
1�p�2�q��
1�q�2�p��.

Such asymptotic estimates for ? are more involved: For n, m # N,
1�p��

1 4�p��
?(n, m, p, p) �� {min(n, m)2�p&1�2 2�p�4

(nm)1�2 max(n, m)1�p&1 1�p�2,
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and for n # N, 1�p�q��

1 p�2, 1�p+1�q�1�2
n1�p+1�q&1�2 p�2, 1�p+1�q�1�2

?(n, n, p, q) �� {n1�q 1�p�q�2

n1�2 1�p�2�q��, p�q$

n1�p+1�q&1�2 1�p�2�q��, q$�p.

Note that the constants depend only on p and q, and that the asymptotic
order for 1�q�p�� clearly follows by symmetry. Some of these
estimates go back to Hardy and Littlewood [HL]��the whole collections
can be found in [S1], [S2]. Clearly, estimates for &id: l n

p�: l m
q � l nm

2 & can
be obtained by the well-known duality of = and ? (see e.g. [DF],
Section 6).

In particular, we get for :, ; # [=, ?] and p, q, r, s # [1, �] the optimal
asymptotic growth (in terms of p and q) of

a[n2�2](id: l n2

2 � l n
p�: l n

q)=c[n2�2](id)

a[n2�2](id: l n
p�: l n

q � l n2

2 )=d[n2�2](id)

x[n2�2](id : l n
p�: l n

q � l n
r �; l n

s ).

For Schatten p-classes the corollary gives

a[n2�2](id : sn
2 � sn

p)=c[n2�2](id) �� max(1, n1�p&1�2)

a[n2�2](id : sn
p � sn

2)=d[n2�2](id) �� max(1, n1�2&1�p)

x[n2�2](id : sn
p � sn

q) ��

max(1, n1�q&1�2)
max(1, n1�p&1�2)

.

The proposition can also be used to complete some of the estimates from
[GKS]. For example in [GKS], 2.9 for 1<p<2 the asymptotic order of

ak(id: l n
p�? l n

p � l n
p$�= l n

p$)

is calculated��with one gap: For [n2�2]�k�n2&[n2�p$] only the upper
estimate

ak(id)�dp
(n2&k+1)1�2

n1+1�p
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is given. The proposition yields that this bound is optimal:

ak(id)�xk(id)�\n2&k+1
n2 +

1�2 &id: l n2

2 � l n
p$�= l n

p$&

&id: l n2

2 � l n
p�? l n

p&

=
(n2&k+1)1�2

n
1

n1�p .

We close this section with the following estimate related to a conjecture of
Heinrich [H].

Remark. Let 1�p�2. Then for En , Fm and : as in the proposition

2&1�2(nm)1�2&1�p &id : l nm
2 � En�: Fm&�c[nm�2](id : l nm

p � En�: Fm)

�d(nm)1�2&1�p &id : l nm
2 � En�: Fm&,

where d>0 is universal.

Proof. The first inequality follows from the corollary by factoring the
identity id : l nm

2 � En�: Fm through l nm
p , and the second one from the fact

that

c[nm�2](id: l nm
p � l nm

2 )O (nm)1�2&1�p

(this is a consequence of the Pajor�Tomczak inequality which we will recall
in section 4). K

For 2�p�� it seems to be reasonable to conjecture that there is a
universal constant d>0 such that for all n, m

d &id: l nm
p � En �: Fm&�c[nm�2](id)�&id&;

for the special case p=�, :== and En=Fn=l n
1 this would answer a

problem of Heinrich [H].

4

In section 6 we will deal with the cases

c[n2�2](id : l n
p�: l n

q � l n2

2 )

d[n2�2](id: l n2

2 � l n
p�: l n

q),

for which completely different techniques are needed. The theory of
Gelfand numbers for operators with values in a Hilbert space is ruled by
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the following deep inequality of Pajor and Tomczak-Jaegermann [PT]:
There is a universal constant c>0 such that for all T # L(X, l N

2 ) and
1�k�N

k1�2ck(T )�cl(T $).

Recall that the l-norm for S # L(l N
2 , Y ) is given by

l(S ) :=\|RN " :
N

k=1

gk(|) Tek"
2

#N(d|)+
1�2

,

where #N is the N-dimensional Gauss measure on RN and gk : RN � R the
kth projection.

Proposition. There are universal constants c, d>0 such that for each
pair of symmetric Banach spaces En and Fm , En n-dimensional and Fm

m-dimensional and every symmetrically invariant norm : on En�Fm

c[nm�2](id: En �: Fm � l nm
2 )�c

l(id: l nm
2 � E $n�:$ F $m)

(nm)1�2 (1)

and up to a logarithmic term this result is asymptotically best possible:

1
d

l(id : l nm
2 � E $n�:$ F $m)

(1+log nm)(nm)1�2 �c[nm�2](id : En�: Fm � l nm
2 ), (2)

here :$ is the dual norm of : defined by E $n�:$ F $m :=(En�: Fm)$.

Clearly only (2) needs a proof. For this denote the ellipsoid of maximal
volume contained in the unit ball BEn�: Fm of En�: Fm by Dmax (see [P]
or [T] for this notion).

Lemma 1. For En , Fm and : as above

Dmax=&id: l nm
2 � En�: Fm&&1 Bl2

nm .

Proof. Consider U :=&id&&1 id. Then by the proposition of section 2

?2(U )=?2(U &1)=(nm)1�2.

On the other hand for any linear bijection generating Dmax:

V : l nm
2 � En�: Fm with V(B

2
nm)=Dmax ,

we also have

?2(V )=?2(V &1)=(nm)1�2.
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Hence Lewis' uniqueness theorem implies that U &1V is an isometry (for
these two well-known results on Dmax see e.g. [P], 3.8 and 3.6). K

En�: Fm has enough symmetries (for this notion see [T], and for a
proof of this fact [GL]). Hence, if & }&max denotes the euclidean norm
generated by Dmax and

I : (Rnm, & }&max) � En�: Fm

stands for the identity, then by a result of [BG] on Banach�Mazur dis-
tances d (between spaces with enough symmetries and Hilbert spaces, see
also [T], p. 131)

d(En �: Fm , l nm
2 )=&I& &I &1&.

By the corollary this implies a result of Schu� tt [S1]��a fact which will be
needed later:

d(En �: Fm , l nm
2 )=&id& &id&1&.

Using trace duality and the reformulation d(X, l n
2)=L2(idX), the L2-fac-

torable norm of idX (see e.g. [DF] or [P1]), it is also possible to deduce
this directly from statement (2) of the proposition in Section 2.

Lemma 2. For id: En�: Fm � l nm
2

nm�l(id&1) l(id$)�#(1+log nm) nm,

here En , Fm and : are again as above and #>0 is some universal constant.

Proof. Since En�: Fm has enough symmetries, it follows from a result
of [BG] (see also [T], p. 131) that

nm=l(I ) l*(I &1).

Moreover, for some universal #>0

l*(I &1)�l((I &1)$)�#(1+log nm) l*(I &1)

([T], p. 87, 92), hence finally

nm�l(I ) l((I &1)$)=l(id&1) l(id$)

�#(1+log nm) l(I ) l*(I&1)=#(1+log nm) nm. K
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Lemma 3. Let E and F be two N-dimensional Banach spaces. Then for
each invertible S # L(E, F ) and 1�k�N

1
cN&k+1((S&1)$)

�ck(S ).

Proof. We will need the following numbers which for T # L(X, Y ) and
k # N are defined by

tk(T ) :=ak(IYTQX).

These numbers were first introduced and studied by Ismagilov [I] under
the name of absolute width (cf. Tichomirov numbers in [P1] or sym-
metrized approximation numbers in [CS]). By Tichomirov's theorem we
have

tn(idX)=1 whenever dim X=n

(cf. [Pi]). Hence the conclusion follows from the multiplicativity of the
approximation numbers, and the fact that the Gelfand and Kolmogorov
numbers are dual to each other:

1=tN(SS &1)=aN(IF SS&1QF)

�ak(IF S ) aN&k+1(S&1QF)

=ck(S ) dN&k+1(S &1)=ck(S ) cN&k+1((S &1)$). K

We now easily obtain a proof of Part (2) of the proposition:

c[nm�2](id)�
1

c[nm�2]((id&1)$)
�

1
c

(nm)1�2

l(id&1)

�
1
c#

(nm)1�2 l(id$)
nm(1+log nm)

=
1
d

l(id$)
(nm)1�2 (1+log nm)

. K

In general the log-term in (2) is not superfluous��to see this recall a
celebrated result of Garnaev and Gluskin [GG] (see also [P], p. 81): For
1�k�N

ck(id: l N
1 � l N

2 ) �� min \1, \log(1+N�k)
k +

1�2

+ .

Since l(id: l N
1 � l N

�) �� (1+log N )1�2 (see the next section), this shows that
for :=?, En=l n

1 and Fm=l m
1 the denominator of the left side of (2) at least

needs the term (1+log nm)1�2.
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5

As an application and for later use we calculate the asymptotic order of
the (Gaussian) cotype 2 and (Gaussian) type 2 constant of l n

p �= l n
q and

l n
p�? l n

q , respectively. Recall that a Banach space E has cotype 2 if there is
a constant c�0 such that for all x1 , ..., xn # E

\ :
n

k=1

&xk&2+
1�2

�c \|Rn " :
n

k=1

gk xk"
2

d#n+
1�2

,

and type 2 if

\|Rn " :
n

k=1

gk xk"
2

d#n+
1�2

�c \ :
n

k=1

&xk&2+
1�2

.

Moreover, C2(E ) :=inf c and T2(E ) :=inf c are called cotype 2 and type 2
constant of E, respectively. It is well-known (see e.g. [T], p. 15) that

C2(l n
p) �� {

1 1�p�2
n1�2&1�p 2�p<�

n1�2

(1+log n)1�2 p=�

n1�q&1�2 1�q�2

T2(l n
q) �� {1 2�q<�

(1+log n)1�2 q=�.

There is a useful observation (see [P], p. 151) relating approximation
numbers, cotype 2 constants and l-norms: For any T # L(l N

2 , E ) and all
1�k�N

k1�2ak(T)�C2(E) l(T).

For the estimation of the l-norms of the tensor product identities under
consideration we moreover need Chevet's inequality on Gaussian averages
which has the following useful reformulation in terms of l-norms and
=-tensor products (see [T], p. 318): There is a constant c>0 such that for
all S # L(l n

2 , E ) and T # L(l m
2 , F )

max(&S& l(T ), l(S ) &T&)�l(S�T : l nm
2 � E�= F )

�c(&S& l(T )+l(S ) &T&).
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Since

l(id: l N
2 � l N

p ) �� {N 1�p

(1+log N )1�2

1�p<�
p=�

([T], p. 329), one easily derives the following asymptotic estimates.

Remark. For 1�p�q��

n1�p+1�q&1�2 1�q�2

l(id: l n2

2 � l n
p�= l n

q) �� {n1�p 2�q��, p<�
(1+log n)1�2 p=q=�.

Now everything is prepard for the proof of the following application.

Proposition (1) For 1�p�q��, ( p, q){(�, �)

C2(l n
p �= l n

q) �� n1�2C2(l n
p) �� {n1�2

n1&1�p

p�2
p�2.

(2) For 1�p�q<�

T2(l n
p �? l n

q) �� n1�2T2(l n
q) �� {n1�q

n1�2

q�2
q�2.

For the remaining case 1�p��, q=� we have:

T2(l n
p �? l n

�) �� n1�2 for 2�p<�

n1�2OT2(l n
p �? l n

�)On1�2(1+log n)1�2 for 1<p<2 or p=�

T2(l 2
1 �? l n

�) �� n1�2(1+log n)1�2.

We don't know whether the logarithmic term in the second statement is
superfluous.

Proof. The lower estimate in (1) is a consequence of

[n2�2]1�2 a[n2�2](id: l n2

2 � l n
p�= l n

q)�C2(l n
p�= l n

q) l(id),

the estimate for the approximation numbers from section 3 and the
preceding remark. Next we prove the upper estimate in (2): Recall that for
any operator T # L(E, F ), 1�p<� and n # N
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?p(T )=&id�T : lp �= E � lp�2p F&

=&id�T $ : lp$�2p$
F $ � lp$ �? E $&

�&id�T : l n
p �= E � l n

p�2p E&

=&id�T $ : l n
p$�2p$

F $ � l n
p$�? E $&

([DF], p. 127), and for finite dimensional E

C2(l n
p(E ))�cC2(E ), 1�p�2

T2(l n
q(E ))�cT2(E ), 2�q<�

(c>0 universal, [T], p. 17). Hence we obtain for 2�p�q<�

T2(l 2
q�? l n

p)�&l n
q �? l n

p w�id l n
q�2q l n

p& T2(l n
q(l n

p))

_&l n
q�2q l n

p w�id l n
q�? l n

p&

OT2(l n
p) ?q$(id l n

p$
)On1�2

([P1], p. 312), for 1�p�2�q��

T2(l n
p�? l n

q)�&l n
p �? l n

q w�id l n
2�22

l n
q& T2(l n

2(l n
q))

_&l n
2�22

l n
q w�id l n

p�? l n
q&

OT2(l n
q) &l n

2�22
l n

q w�id l n
p�? l n

q &

�T2(l n
q) &l n

2�22
l n

q w�id l n
1�? l n

q &

�n1�2 } {1
(1+log n)1�2

q<�
q=�

(Ho� lder's inequality, see also [DF], 7.3), for 1�p�q�2

T2(l n
p �? l n

q)�&l n
p�? l n

q w�id l n
2�22

l n
2 &

_&l n
2 �22

l n
2 w�id l n

p�? l n
q &

On1�q

(section 3), and finally for 2�p��

T2(l n
��? l n

p)�&l n
��? l n

p w�id l n
2�22

l n
p& T2(l n

2(l n
p))

_&l n
2 �22

l n
p w�id l n

��? l n
p&

On1�2T2(l n
p) &l n

2�2p l n
p w�id l n

��? l n
p&

245TENSOR PRODUCT IDENTITIES



File: 640J 299519 . By:CV . Date:27:01:97 . Time:13:44 LOP8M. V8.0. Page 01:01
Codes: 2602 Signs: 990 . Length: 45 pic 0 pts, 190 mm

�n1�2T2(l n
p) ?p$(l n

1 w�id l n
2)

�n1�2T2(l n
p) ?1(l n

1 w�id l n
2)

On1�2 } {1
(1+log n)1�2

p<�
p=�

(Ho� lder's inequality, [DF], 7.2 and [P1], p. 312). Since for arbitrary r, s

C2(l n
r �= l n

s )�T2(l n
r$�? l n

s$)

(see e.g. [T] or [DF], p. 106), this ends the proof of (2)��with one excep-
tion: the proof of the lower estimate of the last statement in (2) is
postponed to the remarks after the proposition in the next section. In order
to prove the upper estimate in (1) note that for 1�q�2

C2(l n
1 �= l n

q)�&l n
1�= l n

q w�id l n
1 �? l n

q& C2(l n
1(l

n
q))

_&l n
1�? l n

q w�id l n
1�= l n

q&

OC2(l n
q) ?1(id l n

q
)On1�2

([P1], p. 312), and for 2�q��

C2(l n
1�= l n

q)�&l n
1 �= l n

� w�id l n
1�22

l n
2& C2(l n

2(l n
1))

_&l n
1�22

l n
2 w�id l n

1�= l n
q&On1�2

(Ho� lder's inequality), hence the above duality argument also finishes the
proof of (1). K

6

As announced at the beginning of section 4 we now complete the results
from section 3.

Proposition. For 1�p�q��

c[n2�2](id : l n
p�= l n

q � l n2

2 ) �� {n1&1�p

n3�2&1�p&1�q

q�2
q�2

(1)

c[n2�2](id: l n
p�? l n

q � l n2

2 ) �� {n1�2&1�p&1�q

n&1�q

p�2
p�2,

(2)
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and by duality one obtains a corresponding result for Kolmogorov numbers.
Moreover, as a by-product we get for 1�p�q<�

l(id: l n2

2 � l n
p �? l n

q) �� {n1�2+1�p+1�q

n1+1�q

p�2
p�2.

(3)

The constants in (1), (2) and (3) depend on p and q only. For asymp-
totic estimates for the Schatten p-norms see (4) at the end of this section.

Proof. We start with the upper estimate for (3) which is based on the
fact that for S # L(l N

2 , Y )

l(S )�T2(Y ) ?2(S$)

(see e.g. [T], p. 83). Together with the results from the proposition in sec-
tion 2, the asymptotic order of =(n, n, p$, q$) given in section 3 and the
proposition from section 5 this yields the upper bound in (3). With this in
hand the Pajor�Tomczak inequality gives the upper estimate in (1) when-
ever 1<p�q��. The remaining cases can be obtained as follows: For
1�q�2

c[n2�2](id: l n
1 �= l n

q � l n2

2 )

�n1&1�q &id : l n
1�= l n

1 � l n
1�? l n

1& c[n2�2](id : l n2

1 � l n2

2 )

=n1&1�q?1(idl n
1
) n&1 On1&1�qn1�2n&1

=n1�2&1�q

and for 2�q��

c[n2�2](id: l n
1�= l n

q � l n2

2 )�&id : l n
1�= l n

q � l n
1�? l n

1& c[n2�2](id: l n2

1 � l n2

2 )

=?1(id : l n
q � l n

1) n&1Onn&1=1

(use [P1], p. 312 and the Garnaev�Gluskin estimate mentioned at the end
of section 4). Analogously, the upper bound in (2) is a consequence of the
remark in section 5 and the Pajor�Tomczak inequality provided that
( p, q){(1, 1); for p=q=1 see again the end of section 4. This finishes the
proofs of (1) and (2) since Lemma 3 from section 4 combined with the
upper estimates yields the lower ones. Finally, the missing lower estimate
in (3) follows from the lower estimate in (1) and another application of the
Pajor�Tomczak inequality. K
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Using the same ideas we obtain in (3) for the remaining case 1�p��,
q=�:

l(id: l n2

2 � l n
p �? l n

�) �� n1�2+1�p for 2�p<�

nO l(id)O (1+log n)1�2 n for 1�p<2 or p=�

n(1+log n)1�2 �� l(id: l n2

2 � l n
1�? l n

�),

and again we don't know whether the log-term in the second statement is
superfluous; for the lower bound in the third statement note that for
1�p<�

n1�p(1+log m)1�2 �� l(id: l nm
2 � l n

p(l m
�))

which follows by direct calculation using the fact that l(id: l m
2 � l m

�) ��

(1+log m)1�2. This now allows to prove the lower estimate of the last state-
ment of the proposition in section 5:

n(1+log n)1�2 �� l(id : l n2

2 � l n
1�? l n

�)

�T2(l n
1�? l n

�) ?2(id$)

=T2(l n
1�? l n

�)
n

&(id$)&1&
,

hence n1�2(1+log n)1�2 OT2(l n
1 �? l n

�).
For Schatten p-classes the methods yield the following asymptotic order:

c[n2�2](id: sn
p � sn

2) �� n1�2&1�p, 1�p��. (4)

Again the upper bound is a consequence of the Pajor�Tomczak inequality
combined with

l(id : sn
2 � sn

r )On1�2+1�r, 1�r��

(see e.g. [T], p. 329), and the lower estimate then follows from Lemma 3
in section 4.

7

Let : be a symmetrically invariant norm on the tensor product of
two symmetric Banach spaces En and Fm , En n-dimensional and Fm
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m-dimensional. Recall from the proposition in section 3 that the first
[nm�2] approximation numbers of

id: l nm
2 � En�: Fm

equal the operator norm of id (up to the constant 1�- 2). In this section
we collect some estimates for the indices [nm�2]�k�nm.

Note first that by the proposition in section 3

\nm&k+1
nm +

1�2

&id&�xk(id)=ak(id),

and trivially

1=anm(id l2
nm)�ak(id) &id&1&,

which proves that for all 1�k�nm

max \ 1
&id&1&

, \nm&k+1
nm +

1�2

&id&+�ak(id)�&id&.

For 1�k�[nm�2] the left side (up to a constant) equals &id& since we
obviously have that &id& &id&1&�1.

Conjecture. There is a universal constant c>0 such that for all En , Fm

and : as above and all [nm�2]�k�nm

ak(id : l nm
2 � En�: Fm)�c max \ 1

&id&1&
, \nm&k+1

nm +
1�2

&id&+ .

The following remarks show why this conjecture seems to be reasonable.

A. The remark after Lemma 1 of section 4 proves

&id& &id&1&�d(l nm
2 , En�: Fm)�(nm)1�2

(for the latter estimate see e.g. [T]), hence we obtain from [CD], p. 72

anm(id: l nm
2 � En �: Fm)=

1
x1(id&1)

=max \ 1
&id&1&

, \nm&nm+1
nm +

1�2

&id&+ .
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B. By the proposition from section 1 for all 1�k�nm

ak(id: l nm
2 � l n

1�: l m
1 ) �� max \ 1

&id&1&
, \nm&k+1

nm +
1�2

&id&+ ,

since &id& �� (nm)1�2 and &id&1& �� 1 (see section 3).

C. The same holds for :==, En=l n
� and Fm=l m

� because of a well-
known result of Stechkin (see e.g. [P2]):

ak(id: l N
1 � l N

2 )=ak(id: l N
2 � l N

�)=\N&k+1
N +

1�2

.

D. Steckin's result can be extended with the help of the following
inequality based on a probabilistic estimate from [GKS]:

Lemma. For all En , Fm and : as above and [nm�2]�k�nm

ak(id: l nm
2 � En �: Fm)�c max \ l(id)

(nm)1�2 , \nm&k+1
nm +

1�2

&id&+ ,

where c is an absolute constant.

Proof. We know from [GKS], 2.2 that

ak(id: l nm
2 � En�: Fm)

�
l(id : l nm

2 � En�: Fm)+(nm&k+1)1�2 &id: l nm
2 � En �: Fm&

l(id : l nm
2 � l nm

2 )&(nm&k+1)1�2 &id: l nm
2 � l nm

2 &

Since l(id : l nm
2 � l nm

2 )=(nm)1�2 and [nm�2]�k�nm, this implies the
desired result. K

Remark 1. For 1�k�n2

ak(id: l n2

2 � l n
p�= l n

q) �� max \ 1
&id&1&

, \n2&k+1
n +

1�2

&id&+ ,

whenever p and q satisfy one of the following three cases:

2�p�q��

1�p�q�2 and 1�p+1�q�3�2

p=q=1

(with constants only depending on p, q).
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Proof. A and C cover the cases ( p, q)=(1, 1) and ( p, q)=(�, �). For
all other cases the remark of section 5 and the estimates for ?(n, n, p$, q$)
of section 3 give

l(id)
n

��

1
&id&1&

. K

Remark 2. For 1�k�n2 and 2�p��

ak(id : sn
2 � sn

p) �� max \ 1
&id&1&

, \n2&k+1
n +

1�2

&id&+ ;

for p=� this is an analogue of Stechkin's result from C for Schatten
classes:

ak(id : sn
1 � sn

2)=ak(id: sn
2 � sn

�)

�� {
1 1�k�[n2�2]

(n2&k+1)1�2

n
[n2�2]�k�n2&n+1

1
n1�2 n2&n+1�k�n2.

Proof. Everything follows from what was said before, the lemma and
the fact (see [T], p. 329) that

l(id : sn
2 � sn

p)On1�2+1�p=n
1

&id&1&
. K

E. By duality all results mentioned so far can be formulated for

ak(id : En�: Fm � l nm
2 ).

F. Let us now turn to the asymptotic growth of

ck(id: En�: Fm � l nm
2 ).

Direct comparison of the estimates from sections 3 and 6 shows that for
1�k�n2�2

ck(id: l n
p�= l n

q � l n2

2 ) �� &id&,

whenever 2�p�q�� or 1�p�q�2, 1�p+1�q�3�2. Moreover, we have

ck(id: sn
p � sn2

2 ) �� &id&,
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for 1�k�n2�2 and 2�p��. Using what was said in the proofs of D,
Remark 1 and 2, this can also be seen as a consequence of the following
general result.

Lemma. Let En , Fm and : be as above. Then for all 1�k�nm

ck(id: En�: Fm � l nm
2 )�max \ 1

&id&1&
,

1
c

(nm&k+1)1�2

l(id&1) + ,

where c> 0 is the constant from the Pajor�Tomczak inequality.

The proof is an immediate consequence of the Pajor�Tomczak inequality
combined with Lemma 3, section 4.

We finish this section with the following analogue of the Garnaev�
Gluskin result (mentioned at the end of section 4) for Schatten classes:

Remark. For 1�p�2 and 1�k�n2

ck(id: sn
p � sn

2) �� min \1,
l(id$)
k1�2 +

={
1 1�k�[n3&2�p]
n3�2&1�p

k1�2 [n3&2�p]�k�[n2�2]

n1�2&1�p [n2�2]�k�n2

(the constants only depend on p). In particular,

ck(id : sn
1 � sn

2) �� {
1 1�k�n

n1�2

k1�2 n�k�[n2�2]

1
n1�2 [n2�2]�k�n2.

Proof. By The Pajor�Tomczak inequality we get

ck(id)�c min \&id&,
l(id$)
k1�2 +

which together with l(id$)On1�p$+1�2 gives the upper estimate. For the
lower estimate note first that for [n2�2]�k�n2

ck(id)�cn2(id)�
1

&id&1&
=n1�2&1�p.
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Since for 1�k�[n3&2�p]

c[n3&2�p](id)�ck (id),

it suffices to show that for [n3&2�p]�k�[n2�2]

ck(id)o
n3�2&1�p

k1�2 .

This can be seen by use of a result from [GKS], 2.3: For [n3&2�p]�
k�[n2�2]

ck(id)=dk(id$: sn
2 � sn

p$)

�
n2&- kn2

- kn2 n1�2&1�p$+n2

�
n3�2&1�p

k1�2

1&1�- 2
2

. K

8

We finally give asymptotically best possible bounds for the [nm�2]th
entropy number of

id: En�: Fm � l nm
2 ,

and compare these results with Schu� tt's volume estimates for the unit balls
of tensor products of l n

r 's (see [S2]).
Recall that the k th entropy number of T # L(X, Y ) is defined by

ek(T ) :=inf {=>0 | _y1 , ..., y2k&1 # Y : TBX/ .
2k&1

l=1

yl+=BY=
(see [CS] or [P]). By a result of Milman and Pisier for all T # L(X, l N

2 )

c[N�2](T )�ce[N�2](T ),

and by Sudakov's inequality for all such T and 1�k�N

k1�2ek(T )�dl(T $)
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(here c, d�0 are universal constants, see [P], p. 68, 81). Hence we
conclude from (and as in) (1), (2) and (4) of section 6:

Proposition. For 1�p�q��

e[n2�2](id: l n
p�= l n

q � l n2

2 )

�� c[n2�2](id) �� {n1&1�p

n3�2&1�p&1�q

q�2
q�2

(1)

e[n2�2](id: l n
p�? l n

q � l n2

2 )

�� c[n2�2](id) �� {n1�2&1�p&1�q

n&1�q

p�2
p�2

(2)

e[n2�2](id: sn
p � sn

2)

�� c[n2�2](id) �� n1�2&1�p. (3)

Recall that for any T # L(X, l N
2 )

\vol(TBX)
vol(Bl2

N) +
1�N

�2eN (T )

(see e.g. [CS] or [P]). Since by the proposition

e[n2�2](id : l n
p�= l n

q � l n2

2 ) ��

1

e[n2�2](id: l n
p$�? l n

q$ � l n2

2 )
,

the inverse Santalo inequality of Bourgain and Milman ([P], p. 100) yields
for :== and ?

\
vol(Bln

p�: l n
q
)

vol(Bl 2
n2) +

1�n2

�� e[n2�2](id : l n
p�: l n

q � l n2

2 ),

hence

(vol(Bl n
p�: l n

q
))1�n2

��

1
n

e[n2�2](id : l n
p �: l n

q � l n2

2 ).

The resulting asymptotic estimates for the volume of Bln
p �: l n

q
in terms of p

and q are due to Schu� tt [S2]. Moreover, by Lemma 1 of section 4 and by
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section 3 this immediately gives estimates for the folume ratio of ?- and
=-tensor products of l n

r 's:

vr(l n
p�: l n

q) :=\
vol(Bln

p�: l n
q
)

vol(Dmax) +
1�n2

�� e[n2�2](id: l n
p �: l n

q � l n2

2 ) :(n, n, p, q);

the estimates for vr(l n
p�? l n

q) in terms of p and q were first given by Schu� tt
[S2].
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